VEROFLEX The preferred high flexibility RF Cable #### **Features** - High Flexible - Low Insertion Loss ## **Typical Applications** - RF Module - Anechoic Test Chambers - Automated Test Equipment - Wireless Telecommunication Module Testing #### **Cable Structure** ### **VF18** | Center
Conductor | Insulation | Dielectric | Out
Conductor | Inner
Layer | Shielding | Jacket | |-----------------------------------|------------|------------|------------------------------|----------------|-------------------------|-------------| | Strand
Silver Plated
Copper | FEP | PTFE | Silver Plated
Copper Foil | PTFE | Silver Plated
Copper | Blue
PVC | ### VF18-armor | Center
Conductor | Insulation | Dielectric | Out
Conductor | Inner
Layer | Shielding | Jacket | |-----------------------------------|------------|------------|------------------------------|----------------|-------------------------|-------------| | Strand
Silver Plated
Copper | d FEP | PTFE | Silver Plated
Copper Foil | PTFE | Silver Plated
Copper | Blue
PVC | ### VF26-armor | /W 14-1-1-2-2-2 | |)[[| | | | | | | | |-----------------------------------|------------|------------|---------------------------------|----------------|-------------------------|-------------|------------------------------|-------------------------|-------------| | Center
Conductor | Insulation | Dielectric | Out
Conductor | Inner
Layer | Shielding | Jacket | Armored
Spring | Strengthening
Net | Jacket | | Strand
Silver Plated
Copper | FEP | PTFE | Silver
Plated
Copper Foil | PTFE | Silver Plated
Copper | Blue
PVC | Stainless
steel
strips | Silver Plated
Copper | Blue
PVC | # VF40 & VF50 | Center
Conductor | Dielectric | Out
Conductor | Inner
Layer | Shielding | Jacket | |-----------------------------------|------------|------------------------------|----------------|-------------------------|-------------| | Strand
Silver Plated
Copper | PTFE | Silver Plated
Copper Foil | PTFE | Silver Plated
Copper | Blue
PVC | | V | F40-armor | & 50-arr | nor | | _ | | | 2222 | | |---|--|------------|---------------------------------|----------------|-------------------------|-------------|------------------------------|-------------------------|-------------| | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Center
Conductor | Dielectric | Out
Conductor | Inner
Layer | Shielding | Jacket | Armored
Spring | Strengthening
Net | Jacket | | | Strand
Silver Plated
Copper | PTFE | Silver
Plated
Copper Foil | PTFE | Silver Plated
Copper | Blue
PVC | Stainless
steel
strips | Silver Plated
Copper | Blue
PVC | ### **VEROFLEX Attenuation** # **VEROFLEX Average Power** # **Specifications** | Cable | VF18 | VF18-armor | VF26 | VF26-armor | VF40 | VF40-armor | VF50 | VF50-armor | | |--|-------------------------|------------|--------|------------|---------|------------|----------|------------|--| | Center Conductor | Stra | nded | Stra | nded | Stra | nded | Stranded | | | | Overall Diameter (mm) | 5.2 | 9.0 | 5.5 | 9.0 | 4.0 | 6.0 | 4.0 | 6.0 | | | Nominal Weight (g/m) | 55 | 174 | 58 | 177 | 30 | 105 | 32 | 107 | | | Minimum Bend Radius (mm) | 20 | 20 | 22 | 40 | 18 | 25 | 14 | 25 | | | Max Flex Cycles | 200 | ,000 | 200 |),000 | 200,000 | | 200 |),000 | | | Temperature Range (°C) | -40 |)/85 | -40 | 0/85 | -40 | 0/85 | -40 | 0/85 | | | Maximum Frequency (GHz) | equency (GHz) 18.0 26.5 | | 40 | | 50 | | | | | | Typical VSWR | 1.19:1 | | 1.22:1 | | 1.25:1 | | 1.25:1 | | | | Maximum VSWR | 1 | 3 | 1.3 | 1.30:1 | | 1.35:1 | | 1.40:1 | | | Max. Insertion Loss (dB/m) | 1 | .98 | 1.6 | | 3.07 | | 4.9 | | | | Impedance (Nominal) (Ohms) | Ē | 50 | 50 | | 50 | | 50 | | | | Phase Stability vs. Flexure | ± | 5.0 | ± | 6.0 | ± | 6.0 | ± | 8.0 | | | Amplitude Stability vs.
Bending(dB) | < ± | ±0.1 | <: | ±0.1 | < ± | 0.15 | < ± | 0.15 | | | Amplitude Stability vs.
Shaking(dB) | < ± | ±0.1 | <: | ±0.1 | < ± | 0.15 | < ± | 0.15 | | | Dielectric Constant
(Nominal) | 1. | 1.83 1.45 | | .45 | 1.52 | | 1.83 | | | | Velocity of Propagation
(Nominal) (%) | - | 74 | 83 | | 81 | | 74 | | | | Time Delay
(Nominal)(ns/cm) | 0. | 045 | 0.0 | 0.0401 | | 0.041 | | 0.045 | | ## **VF18** Attenuation # VF18 Average Power ## **VF26** Attenuation # Frequency (GHz) # VF26 Average Power ## **VF40** Attenuation # VF40 Average Power ## **VF50** Attenuation # Frequency (GHz) # VF50 Average Power # **Attenuation** (Typical @25°C & VSWR = 1.0) **& Power** (VSWR = 1.0; 40°C; Sea Level) | | VF18/VF1 | .8 armor | VF26/VF2 | 26 armor | VF40/VF4 | 0 armor | VF50/VF5 | 0 armor | |--------------------|-----------------------|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------| | Frequency
(MHz) | Attenuation (dB/100m) | Average
Power
(kW) | | 300 | 20.45 | 0.890 | 15.39 | 0.800 | 22.33 | 0.740 | 31.38 | 0.200 | | 1000 | 38.49 | 0.473 | 28.28 | 0.435 | 41.37 | 0.399 | 58.13 | 0.108 | | 3000 | 69.87 | 0.261 | 49.50 | 0.249 | 73.36 | 0.225 | 103.01 | 0.061 | | 4000 | 82.03 | 0.222 | 57.39 | 0.214 | 85.42 | 0.193 | 119.93 | 0.052 | | 6000 | 103.25 | 0.176 | 70.74 | 0.174 | 106.10 | 0.156 | 148.92 | 0.042 | | 8000 | 121.94 | 0.149 | 82.13 | 0.150 | 123.96 | 0.133 | 173.93 | 0.036 | | 10000 | 139.00 | 0.131 | 92.26 | 0.133 | 140.00 | 0.118 | 196.40 | 0.032 | | 12000 | 154.91 | 0.118 | 101.50 | 0.121 | 154.77 | 0.107 | 217.07 | 0.029 | | 14000 | 169.95 | 0.107 | 110.06 | 0.112 | 168.57 | 0.098 | 236.38 | 0.027 | | 18000 | 198.08 | 0.092 | 125.68 | 0.098 | 193.99 | 0.085 | 271.94 | 0.023 | | 24000 | | | 146.46 | 0.084 | 228.33 | 0.072 | 319.93 | 0.020 | | 26500 | | | 154.43 | 0.080 | 241.64 | 0.068 | 338.54 | 0.019 | | 29000 | | | | | 254.50 | 0.065 | 356.50 | 0.018 | | 32000 | | | | | 269.41 | 0.061 | 377.32 | 0.017 | | 40000 | | | | | 306.88 | 0.054 | 429.63 | 0.015 | | 50000 | | | | | | | 490.06 | 0.013 | ## Calculate Attenuation = K1*√FMHz + K2*FMHz | | VF18/VF18 armor | VF26/VF26 armor | VF40/VF40 armor | VF50/VF50 armor | |----|-----------------|-----------------|-----------------|-----------------| | K1 | 1.1370000 | 0.8811000 | 1.2657000 | 1.7798616 | | К2 | 0.0025300 | 0.0004150 | 0.0013435 | 0.0018415 | ^{© 2022} Verotronic Technologies Pte Ltd. All rights reserved. All information contained in this document is provided in connection with the products and services of Verotronic Technologies Pte Ltd (Verotronic). While every effort has been made to ensure accuracy, Verotronic assumes no responsibility for errors, omissions, or decisions made reliant upon this information. Verotronic may change related products, specifications, product description and documentation at any time, without prior notice. Any brand and logo depicted remain the intellectual property of its owner. # **Selecting The Suitable Cable: Part Number Construction** Cable Type-Length Conn (I)Conn (II) - A | 1 | Cable Type | Cable Code | 2 | Length Requirement | |---|------------------------------|------------|---|--------------------| | | VEROFlex Operating@Max 18GHz | VF18 | | 1000mm | | 1ax 180 | 3112 | VF18 | | | | 1000 | 7111111 | 01 | .000 | | |---------|------|------|------|-------|-------|------|---------|----|------|--| | tor | 4 | | (11) | Conne | ector | 5 | | | | | | 3 | Connector (I) | Connector
Code | |---|---------------|-------------------| | | SMA Male | SMM | | Connector (II) | Connector
Code | |----------------|-------------------| | SMA Male | SMM | | 5 | With Armor | No Armor | | | | |---|------------|----------|--|--|--| | | А | N | | | | **Length Code** ## **Criteria for Connector Selection** | Connector
Type | Mate | ce Connector
Code | | | Max Operating
Frequency (GHZ) | VF18/
VF18-
armor | VF26/
VF26-
armor | VF40/
VF40-
armor | VF50/
VF50-
armor | |-------------------|------|----------------------|---|---|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | SMA | M | S | М | М | 26.5 | • | • | • | | | SMA RA | M | Α | S | М | 18.0 | • | | | | | SMA | F | S | М | F | 18.0 | • | | | | | N Type | М | N | N | M | 18.0 | • | • | | | | TNC | M | Т | N | M | 18.0 | • | | | | | 3.5mm | М | D | М | M | 26.5 | | • | | | | 2.92mm | М | К | М | М | 40.0 | | | • | • | | 2.92mm RA | M | R | К | M | 40.0 | | | | • | | 2.92mm | F | K | M | F | 40.0 | | | | • | | 2.4mm | М | L | М | M | 50.0 | | | | • | | 2.4mm | F | L | М | F | 50.0 | | | | • | ## **VF18** # VF18-armor ## VF26 ### VF26-armor ## **VF40** ### VF40-armor ## VF50-armor